home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Hand Picked Software
/
Hand Picked Software.iso
/
educate
/
rucalc
/
cii_3.hlp
< prev
next >
Wrap
Text File
|
1995-03-13
|
3KB
|
124 lines
INTEGRAL CALCULUS
The antiderivative of a function f(x), denoted by F(x), is defined as
⌠ ,
│ f(x)dx = F(x) + c where F (x) = f(x) and c is an arbitrary constant.
⌡
The Fundamental Theorem of Calculus relates the antiderivative to the
integral as:
b
⌠ ,
│ f(x)dx = F(b) - F(a) where F (x) = f(x)
⌡
a
as well as:
x
d ⌠
── │ f(t)dt = f(x).
dx ⌡
a
If f(x) ≥ O and continuous on [a,b] then:
b
⌠
│ f(x)dx is the area under the curve y = f(x) bounded by the
⌡
a
lines x = a, x = b and y = O.
Properties of integrals of functions f(x) and g(x) continuous
on [a,b]:
a
⌠
1. │ f(x)dx = O
⌡
a
b b
⌠ ⌠
2. │ k f(x)dx = k │ f(x)dx where k is a constant
⌡ ⌡
a a
b b b
⌠ ⌠ ⌠
3. │ (f(x) ± g(x))dx = │ f(x)dx ± │ g(x)dx
⌡ ⌡ ⌡
a a a
b c b
⌠ ⌠ ⌠
4. │ f(x)dx = │ f(x)dx + │ f(x)dx for c in (a,b).
⌡ ⌡ ⌡
a a c
b a
⌠ ⌠
5. │ f(x)dx = -│ f(x)dx
⌡ ⌡
a b
b
⌠
6. │ f(x)dx = f(c)(b - a) for some c in [a,b].
⌡ (Mean Value Theorem for Integrals)
a
b g(b)
⌠ , ⌠ ,
7. │ f(g(x)) g (x)dx = │ f(u)du when g (x) is continuous on
⌡ ⌡ [a,b]. (u substitution)
a g(a)
Notice that the limits of integration on the u variable correspond to
those on x through the function u = g(x).
The concept of antidifferentiation leads us to the following formula:
⌠ n+1
│ n x
8. │ x dx = ────── + c
│ n + 1
⌡
⌠
9. │ cos x dx = sin x + c
⌡
⌠
1O. │ sin x dx = -cos x + c
⌡
⌠ 2
11. │ sec x dx = tan x + c
⌡
⌠ 2
12. │ csc x dx = -cot x + c
⌡
⌠
13. │ sec x tan x dx = sec x + c
⌡
⌠
14. │ csc x cot x dx = - csc x + c
⌡
where c is an arbitrary constant.